Live Webinar | Jan 15, 11 AM EST — Search, Import, Automate: How Enterprises Launch AI Workflows in Minutes. Register Now !

Skip to the content

Automate Everything !

🤖 Explore with AI: ChatGPT Perplexity Claude Google AI Grok

For Enterprises | Teams | Start-Ups

eZintegrations – AI Workflows & AI Agents Automation Hub

eZintegrations – AI Workflows & AI Agents Automation Hub

Automate to Innovate

0
$0.00
eZintegrations – AI Workflows & AI Agents Automation Hub

eZintegrations – AI Workflows & AI Agents Automation Hub

Automate to Innovate

Menu
0
$0.00
  • Categories
    • Workflow Automation
    • AI Workflow
    • AI Agent
    • Agentic AI
  • Home
  • Automate Now !
  • About Us
  • Contact
  • Blog
  • Free AI Workflow
  • Free AI Agents

eZintegrations

  • eZintegrations Introduction
  • Integration Bridge
    • Rename Integration Bridge
    • Enable and Disable Integration Bridge
    • Integration Bridge Save
    • Integration Bridge Run Once
    • Clear Logs of An Integration Bridge
    • Integration Bridge Share Feature
    • Copy Operation
    • Integration Bridge Import/Export
    • Integration Bridge Auto Save Feature
    • View An Integration Bridge
    • Copy Integration Bridge
    • Streaming Logs of Integration Bridge
    • Download Logs of An Integration Bridge
    • Status of Integration Bridge
    • Refresh an Integration Bridge
    • Stop An Integration Bridge
    • Start An Integration Bridge
    • Frequency
  • Feedback
    • Feedback: Tell Us What You Think
  • Understanding Session Timeout
    • Understanding Session Timeout and the Idle Countdown Timer
  • Alerts
    • Alerts
  • Marketplace
    • Marketplace
  • DIY Articles
    • 60+ Transformations for Smarter Data: How eZintegrations Powers Operations
    • From SOAP to GraphQL: Modernizing Integrations with eZintegrations
    • Accelerate Growth with eZintegrations Unified API Marketplace
    • Collaborative Integrations: Sharing Bridges in eZintegrations to Foster Cross-Team Innovation
    • Unlocking Hidden Value in Unstructured Data: eZintegrations AI Document Magic for Strategic Insights
    • Workflow Cloning Wizardry: Replicating Success with eZintegrations Integration Duplication for Rapid Scaling
    • Time Zone Triumph: Global Scheduling in eZintegrations for Synchronized Cross-Border Operations
    • Parallel Processing Power: eZintegrations Multi-Threaded Workflows for Lightning Fast Data Syncs
    • From Data Chaos to Competitive Edge: How eZintegrations AI Syncs Silos and Boosts ROI by 40%
    • From Emails to Insights: eZintegrations AI Turns Chaos into Opportunity
    • Handling XML Responses in eZintegrations
    • Text to Action: Shape Data with Plain English or Python in eZintegrations
    • AI Magic: Send Data to Any Database with a Simple English Prompt in eZintegrations
    • Configuring Netsuite as Source
    • Configuring Salesforce as Source
    • Overcoming Upsert Limitations: A Case Study on Enabling Upsert Operations in APIs without Inherent Support
    • Connecting QuickBooks to Datalake
    • Connecting Salesforce to Netsuite
    • Connecting My-SQL to Salesforce Using Bizdata Universal API
    • Effortless Integration Scheduling: Mastering Biweekly Execution with eZintegrations
    • Connecting MS-SQL or Oracle Database to Salesforce Using Bizdata Universal API
    • Establishing Token-Based Authentication within NetSuite
    • Registering a Salesforce App and Obtaining Client ID / Secret (for API Calls / OAuth)
  • Management
    • Adding Users and Granting Organization Admin Privileges : Step-by-Step Guide
    • Security Matrix
    • Adding Users as an Organization Admin (Step-by-Step Guide)
  • Appendix
    • Pivot Operation Use Cases
    • Efficient Column Renaming in eZintegration Using Python Operation
    • Filter Operation Use Cases
    • Connecting any Database to Database
    • Connecting Data Targets
    • Connecting Data Sources
  • Release Notes
    • Release Notes
  • Accounting & Billing
    • Invoices
    • Billing Information
    • Payment Method
    • Current Plan
    • Plans
    • Dashboard
  • My Profile
    • My Profile
  • OnBoarding
    • Microsoft Login
    • Multi-Factor Authentication
    • Login for New Users
  • Pycode Examples
    • Extract Domain Name from Email using Split
    • Split String with Regular Expression
    • Bulk Rename of Keys
    • Form a JSON Object from array of array
    • URL Parsing
    • Form a JSON Object based on the key and values available in JSON Dataset
    • Convert Empty String in a JSON to a “null” value
    • Generate a OAuth 1.0 Signature or Store a Code Response in a User Defined Variable
    • Rename JSON Key based on other key’s value
  • Sprintf
    • Sprintf
  • Data Source Management
    • Data Source Management
  • Data Source API
    • Response Parameters: Text, XML, and JSON Formats
    • Environment Settings for Reusable and Dynamic Configuration
    • API Numeric Parameters for Pagination and Record Limits
    • API Time Parameters for Date and Time Filtering
    • How to test the Data Source API
    • Pre- Request Scripts
      • Pre- Request Scripts for Amazon S3
      • Pre- Request Scripts for Oracle Netsuite
      • Pre-Request Script for Amazon SP API
      • Pre-Request Scripts
    • API Pagination Methods
      • Custom Pagination
      • Encoded Next Token Pagination
      • Cursor Pagination
      • Pagination with Body
      • Total Page Count Pagination
      • Offset Pagination
      • Next URL Pagination
      • API Pagination Introduction
      • Pagination examples
        • SAP Shipment API Pagination
        • Amazon SP API Pagination
    • API Authorization
      • OAuth 2.0 Authorization
      • OAuth 1.0 Authorization
      • Basic Authentication Method
      • API Key Authorization Method
      • Different Types of API Authorization
  • Console
    • Console: Check Your Data at Every Step
  • eZintegrations Dashboard Overview
    • eZintegrations Dashboard Overview
  • Monitoring Dashboard
    • Monitoring Dashboard
  • Advanced Settings
    • Advanced Settings
  • Summary
    • Summary
  • Data Target- Email
    • Data Target- Email
  • Data Target- Bizintel360 Datalake Ingestion
    • Data Target- Goldfinch Analytics Datalake Ingestion
  • Data Target- Database
    • Data Target – Database SQL Examples
    • Database as a Data Target
  • Data Target API
    • Response Parameters
    • REST API Target
    • Pre-Request Script
    • Test the Data Target
  • Bizdata Dataset
    • Bizdata Dataset Response
  • Data Source- Email
    • Extract Data from Emails
  • Data Source- Websocket
    • WebSocket Data Source Overview
  • Data Source Bizdata Data Lake
    • How to Connect Data Lake as Source
  • Data Source Database
    • How to connect Data Source Database
  • Data Operations
    • Deep Learning
    • Data Orchestration
    • Data Pipeline Controls
    • Data Cleaning
    • Data Wrangling
    • Data Transformation

Goldfinch AI

  • Goldfinch AI Introduction

Bizdata API

  • Universal API for Database
    • API for PostgreSQL Database – Universal API
    • API for Amazon Aurora Database (MySQL/Maria) – Universal API
    • API for Amazon Redshift Database – Universal API
    • API for Snowflake Database – Universal API
    • API for MySQL/Maria Database – Universal API
    • API for MS-SQL Database-Universal API
    • API for Oracle Database- Universal API
    • Introduction to Universal API for Databases
  • SFTP API
    • SFTP API
  • Document Understanding APIs
    • Document Understanding API- Extract data from Documents
  • Web Crawler API
    • Web Crawler API – Fast Website Scraping
  • AI Workflow Testing APIs
    • Netsuite Source Testing API (Netsuite API Replica)
    • Salesforce Testing API (Salesforce API replica)
    • OAuth2.0 Testing API 
    • Basic Auth Testing API 
    • No Auth Testing API
    • Pagination with Body Testing API
    • Next URL Pagination Testing API 
    • Total Page Count Pagination Testing API
    • Cursor Pagination Testing API 
    • Offset Pagination Testing API
  • Import IB API
    • Import Integration service with .JSON file
  • Linux File & Folder Monitoring APIs
    • Monitor Linux Files & Folder using APIs
  • Webhook
    • Webhook Integration-Capture Events in Real Time
  • Websocket
    • Websocket Integration- Fetch Real Time Data
  • Image Understanding
    • Image Understanding API – Extract data from Images

Goldfinch Analytics

  • Visualization Login
    • Enabling Two Factor Authentication
    • Visualization login for analytics users
  • Profile
    • Profile
  • Datalake
    • Datalake
  • Discover
    • Discover
  • Widgets
    • Filter
    • Widget List
    • Widgets Guide
    • Creating Widgets & Adding Widgets to Dashboard
  • Dashboard
    • Dashboard
  • Views
    • Views
  • Filter Queries
    • Filter Queries for Reports and Dashboard
  • Alerts
    • Alerts
  • Management
    • Management
  • Downloading Reports with Filtered Data
    • Downloading Reports with Filtered Data in Goldfinch Analytics
  • Downloads
    • Downloads – eZIntegrations Documents & Resources | Official Guides & Manuals
View Categories

Views

In the side panel (as shown below), user will find option: Views.

Click views, Select data set and set properties (as shown below)

Bizintel360 Data lake SQL Queries

Bizintel360™ Data Lake lets you write sql query with industry standard sql query syntax, functions, aggregations, searches and joins 

The easiest way to write SQL Queries is to connect with APIs or with any REST API driven BI App like Tableau, MS Power BI, Oracle OBIEE etc. 

Below is the standard REST API for writing sql queries as body in POST Method 

 

Method: POST

 

​

 

 

​

Endpoint URL: sub–domain.bizdata360.com:port/_plugins/_sql?format=csv

​

 

Authorization: Basic Authorization. Written in Basic ************

​

 

Body as JSON Body

 

​

 

{

 

​

 

“query”: “SELECT * FROM bizintel360-movies”

 

​

 

}

Applicable formats are csv ,json and jdbc ( jdbc also provides response in json with a flat json) 

If you use csv, the response will come in csv format and if you use json and jdbc the response will come in json format.

List all the Tables and its columns 

List all the Tables available in Bizintel360 Data Lake Hub 

SHOW TABLES LIKE % 

List all the tables which contain string “order” 

SHOW TABLES LIKE orders% 

 Show all the columns of a table 

DESCRIBE TABLES LIKE bizintel360-orders 

Read Data 

Select * from table_name where column_name=’column_value’ 

Execution Order

Always execute the sql in the following order 

FROM index 

WHERE predicates 

  GROUP BY expressions 

   HAVING predicates 

    SELECT expressions 

     ORDER BY expressions 

      LIMIT size 

Basic SQL Queries 

You can write all basic sql queries with SELECT statement with FROM, WHERE, GROUP BY, HAVING, ORDER BY and LIMIT to aggregate and find the data 

Retrieve all fields from a table 

Select * from table_name 

Retrieve only specific fields from a table 

 select firstname, lastname FROM table_name 

Field Aliases 

You can use field aliases instead of field names, in order to make field names more readable  

select transaction_number as num from transactions

Distinct Clause

select distinct age from transactions 

Table Alias 

You can use table alias to query across tables 

select transactions.name, transactions.age from transactions 

OR 

select trans.name, trans.age from transactions trans 

Filter/Where Conditions 

 You can put all sorts of arithmetic conditions to filter the records using WHERE clause 

select transaction_number from transactions where transaction.id=12 

Description  Operator 
=  Equal To 
<>  Not Equal To 
>  Greater Than 
<  Less Than 
>=  Greater than or equal to 
<=  Less than or equal to 
IN  You can Specify multiple OR operators 
BETWEEN  Searched the records between range of numeric and date field 
LIKE  Search for the keyword or string 
IS NULL  It checks if field value is null 
IS NOT NULL  It checks if the field value is not null 

Group By Fields 

select age from transactions GROUP BY age 

Group by Field Alias 

select transaction_number as num from transactions GROUP BY num

Group by Scalar Functions 

select ABS (age) AS age from transactions GROUP BY ABS (age) 

Having Clause 

You can use aggregations in HAVING as COUNT, SUM, AVG, MIN, and MAX 

SELECT age, MAX (balance) 

FROM transactions 

GROUP BY age HAVING MIN (balance) > 10000

Order By 

Use Order by to sort the results in desired order 

SELECT transaction_number 

FROM transactions 

ORDER BY transaction_number DESC 

Order By with NOT NULL 

SELECT employee 

FROM transactions 

ORDER BY employee IS NOT NULL 

LIMIT 

You can specify the maximum number of records that you want to retrieve  

SELECT transaction_number 

FROM transactions 

ORDER BY transaction_number LIMIT 1 

Complex SQL Queries

With Complex queries in Bzintel360 Data Lake you can do subquery, union, join and minus.

Supported joins are inner joins, cross joins and outer joins.

Inner Join 

 SELECT 

  a.employee_number, a.firstname, a.lastname, 

  e.id, e.name 

FROM transactions a 

JOIN employees e 

ON a.employee_number = e.id

CROSS Join

SELECT 

  a.employee_number, a.firstname, a.lastname, 

  e.id, e.name 

FROM transactions a 

JOIN employees e 

LEFT OUTER Join 

SELECT 

  a.employee_number, a.firstname, a.lastname, 

  e.id, e.name 

FROM transactions a 

LEFT JOIN employees e 

ON a.employee_number = e.id 

Subquery 

SELECT a1.firstname, a1.lastname, a1.balance 

FROM transactions a1 

WHERE a1.employee_number IN ( 

  SELECT a2.employee_number 

  FROM transactions a2 

  WHERE a2.balance > 10000 

) 

From Subquery 

 

SELECT a.f, a.l, a.a 

FROM ( 

  SELECT firstname AS f, lastname AS l, age AS a 

  FROM transactions 

  WHERE age > 21 

) AS a 

Functions 

Bizintel360 Data Lake Support functions like Mathematical Functions, Trigonometric functions, Date & Time functions, String Functions, Aggregate functions and some advanced functions 

Mathematical Functions 

 Below are examples of Mathematical Functions that can be used in Bizintel360 Data Lake 

Function Example 
abs  SELECT abs(0.5) FROM bizintel360-tablename LIMIT 1 
add  SELECT add(1, 5) FROM bizintel360-tablename LIMIT 1 
cbrt  SELECT cbrt(0.5) FROM bizintel360-tablename LIMIT 1 
ceil  SELECT ceil(0.5) FROM bizintel360-tablename LIMIT 1 
conv  SELECT CONV(’12’, 10, 16), CONV(‘2C’, 16, 10), CONV(12, 10, 2), CONV(1111, 2, 10) FROM bizintel360-tablename LIMIT 1 
crc32  SELECT crc32(‘MySQL’) FROM bizintel360-tablename LIMIT 1 
divide  SELECT divide(1, 0.5) FROM bizintel360-tablename LIMIT 1 
e  SELECT e() FROM bizintel360-tablename LIMIT 1 
exp  SELECT exp(0.5) FROM bizintel360-tablename LIMIT 1 
expm1  SELECT expm1(0.5) FROM bizintel360-tablename LIMIT 1 
floor  SELECT floor(0.5) AS Rounded_Down FROM bizintel360-tablename LIMIT 1 
ln  SELECT ln FROM bizintel360-tablename LIMIT 1 
log  SELECT log FROM bizintel360-tablename LIMIT 1 
log2  SELECT log2 FROM bizintel360-tablename LIMIT 1 
log10  SELECT log10 FROM bizintel360-tablename LIMIT 1 
mod  SELECT modulus(2, 3) FROM bizintel360-tablename LIMIT 1 
multiply  SELECT multiply(2, 3) FROM bizintel360-tablename LIMIT 1 
pi  SELECT pi() FROM bizintel360-tablename LIMIT 1 
pow  SELECT pow(2, 3) FROM bizintel360-tablename LIMIT 1 
power  SELECT power(2, 3) FROM bizintel360-tablename LIMIT 1 
rand  SELECT rand(0.5) FROM bizintel360-tablename LIMIT 1 
rint  SELECT rint(1.5) FROM bizintel360-tablename LIMIT 1 
round  SELECT round(1.5) FROM bizintel360-tablename LIMIT 1 
sign  SELECT sign(1.5) FROM bizintel360-tablename LIMIT 1 
signum  SELECT signum(0.5) FROM bizintel360-tablename LIMIT 1 
sqrt  SELECT sqrt(0.5) FROM bizintel360-tablename LIMIT 1 
strcmp  SELECT strcmp(‘hello’, ‘hello’) FROM bizintel360-tablename LIMIT 1 
subtract  SELECT subtract(3, 2) FROM bizintel360-tablename LIMIT 1 
truncate  SELECT truncate(56.78, 1) FROM bizintel360-tablename LIMIT 1 
/  SELECT 1 / 100 FROM bizintel360-tablename LIMIT 1 
%  SELECT 1 % 100 FROM bizintel360-tablename LIMIT 1 

 

Trigonometric Functions 

Below are examples of Trigonometry Functions that can be used in Bizintel360 Data Lake 

Function  Example 
acos  SELECT acos(0.5) FROM bizintel360-tablename LIMIT 1 
asin  SELECT asin(0.5) FROM bizintel360-tablename LIMIT 1 
atan  SELECT atan(0.5) FROM bizintel360-tablename LIMIT 1 
atan2  SELECT atan2(1, 0.5) FROM bizintel360-tablename LIMIT 1 
cos  SELECT cos(0.5) FROM bizintel360-tablename LIMIT 1 
cosh  SELECT cosh(0.5) FROM bizintel360-tablename LIMIT 1 
cot  SELECT cot(0.5) FROM bizintel360-tablename LIMIT 1 
degrees  SELECT degrees(0.5) FROM bizintel360-tablename LIMIT 1 
radians  SELECT radians(0.5) FROM bizintel360-tablename LIMIT 1 
sin  SELECT sin(0.5) FROM bizintel360-tablename LIMIT 1 
sinh  SELECT sinh(0.5) FROM bizintel360-tablename LIMIT 1 
tan  SELECT tan(0.5) FROM bizintel360-tablename LIMIT 1 

Date & Time Functions 

Below are examples of Date & Time Functions that can be used in Bizintel360 Data Lake 

Function  Example 
adddate  SELECT adddate(date(‘2020-08-26’), INTERVAL 1 hour) FROM bizintel360-tablename LIMIT 1 
curdate  SELECT curdate() FROM bizintel360-tablename LIMIT 1 
date  SELECT date() FROM bizintel360-tablename LIMIT 1 
date_format  SELECT date_format(date, ‘Y’) FROM bizintel360-tablename LIMIT 1 
date_sub  SELECT date_sub(date(‘2008-01-02’), INTERVAL 31 day) FROM bizintel360-tablename LIMIT 1 
dayofmonth  SELECT dayofmonth(date) FROM bizintel360-tablename LIMIT 1 
dayname  SELECT dayname(date(‘2020-08-26’)) FROM bizintel360-tablename LIMIT 1 
dayofyear  SELECT dayofyear(date(‘2020-08-26’)) FROM bizintel360-tablename LIMIT 1 
dayofweek  SELECT dayofweek(date(‘2020-08-26’)) FROM bizintel360-tablename LIMIT 1 
from_days  SELECT from_days FROM bizintel360-tablename LIMIT 1 
hour  SELECT hour((time ’01:02:03′)) FROM bizintel360-tablename LIMIT 1 
maketime  SELECT maketime(1, 2, 3) FROM bizintel360-tablename LIMIT 1 
microsecond  SELECT microsecond((time ’01:02:03.123456′)) FROM bizintel360-tablename LIMIT 1 
minute  SELECT minute((time ’01:02:03′)) FROM bizintel360-tablename LIMIT 1 
month  SELECT month(date) FROM bizintel360-tablename 
monthname  SELECT monthname(date) FROM bizintel360-tablename 
now  SELECT now() FROM bizintel360-tablename LIMIT 1 
quarter  SELECT quarter(date(‘2020-08-26’)) FROM bizintel360-tablename LIMIT 1 
second  SELECT second((time ’01:02:03′)) FROM bizintel360-tablename LIMIT 1 
subdate  SELECT subdate(date(‘2008-01-02’), INTERVAL 31 day) FROM bizintel360-tablename LIMIT 1 
time  SELECT time(’13:49:00′) FROM bizintel360-tablename LIMIT 1 
time_to_sec  SELECT time_to_sec(time ’22:23:00′) FROM bizintel360-tablename LIMIT 1 
timestamp  SELECT timestamp(date) FROM bizintel360-tablename LIMIT 1 
to_days  SELECT to_days(date ‘2008-10-07’) FROM bizintel360-tablename LIMIT 1 
week  SELECT week(date(‘2008-02-20’)) FROM bizintel360-tablename LIMIT 1 
year  SELECT year(date) FROM bizintel360-tablename LIMIT 1 

String Functions 

Below are examples of String Functions that can be used in Bizintel360 Data Lake 

Function  Example 
ascii  SELECT ascii(name.keyword) FROM bizintel360-tablename LIMIT 1 
concat  SELECT concat(‘hello’, ‘world’) FROM bizintel360-tablename LIMIT 1 
concat_ws  SELECT concat_ws(“-“, “Tutorial”, “is”, “fun!”) FROM bizintel360-tablename LIMIT 1 
left  SELECT left(‘hello’, 2) FROM bizintel360-tablename LIMIT 1 
length  SELECT length(‘hello’) FROM bizintel360-tablename LIMIT 1 
locate  SELECT locate(‘o’, ‘hello’) FROM bizintel360-tablename LIMIT 1 
  SELECT locate(‘l’, ‘hello’, 3) FROM bizintel360-tablename LIMIT 1 
replace  SELECT replace(‘hello’, ‘l’, ‘x’) FROM bizintel360-tablename LIMIT 1 
right  SELECT right(‘hello’, 1) FROM bizintel360-tablename LIMIT 1 
rtrim  SELECT rtrim(name.keyword) FROM bizintel360-tablename LIMIT 1 
substring  SELECT substring(name.keyword, 2,5) FROM bizintel360-tablename LIMIT 1 
trim  SELECT trim(‘ hello’) FROM bizintel360-tablename LIMIT 1 
upper  SELECT upper(‘helloworld’) FROM bizintel360-tablename LIMIT 1 

Aggregate Functions

Below are examples of Aggregate Functions that can be used in Bizintel360 Data Lake 

Function  Example 
avg  SELECT avg(2, 3) FROM bizintel360-tablename LIMIT 1 
count  SELECT count(date) FROM bizintel360-tablename LIMIT 1 
min  SELECT min(2, 3) FROM bizintel360-tablename LIMIT 1 
show  SHOW TABLES LIKE bizintel360-tablename 

Some Advanced Functions 

Below are examples of some extra Advanced Functions that can be used in Bizintel360 Data Lake 

Function  Example 
if  SELECT if(false, 0, 1) FROM my-index LIMIT 1 
SELECT if(true, 0, 1) FROM my-index LIMIT 1 
ifnull  SELECT ifnull(‘hello’, 1) FROM my-index LIMIT 1 
SELECT ifnull(null, 1) FROM my-index LIMIT 1 
 

isnull 

SELECT isnull(null) FROM my-index LIMIT 1 
SELECT isnull FROM my-index LIMIT 1 

Aggregation Functions 

 Aggregation functions use GROUP BY to group the dataset values into subsets. You can write sql to aggregate data by COUNT, SUM, AVG, MIN, and MAX 

Below are multiple examples to use the aggregation functions 

SELECT category, sum(sales) FROM orders GROUP BY category 

SELECT category, sum(sales) FROM orders GROUP BY 1 

SELECT abs(account_number), sum(sales) FROM orders GROUP BY abs(account_number) 

SELECT category, sum(sales) FROM orders GROUP BY category 

SELECT category, sum(sales) * 2 as sum2 FROM orders GROUP BY category 

SELECT category, sum(sales * 2) as sum2 FROM orders GROUP BY category 

 # Having with Group By  

SELECT category, sum(sales) 

FROM orders 

GROUP BY category 

HAVING sum(sales) > 100; 

 # Having with Group By using Alias 

 SELECT category, sum(sales) AS s 

FROM orders 

GROUP BY category 

HAVING s > 100; 

  

#Having without Group By 

 SELECT ‘Total of sales > 100’ 

FROM orders 

 

HAVING sum(sales) > 100; 

Updated on December 29, 2025

What are your Feelings

  • Happy
  • Normal
  • Sad

Share This Article :

  • Facebook
  • X
  • LinkedIn
  • Pinterest
Table of Contents
  • Bizintel360 Data lake SQL Queries
  • List all the Tables and its columns 
  • Read Data 
  • Execution Order
  • Basic SQL Queries 
    • Retrieve all fields from a table 
    • Retrieve only specific fields from a table 
    • Field Aliases 
    • Distinct Clause
    • Table Alias 
    • Filter/Where Conditions 
    • Group By Fields 
    • Group by Field Alias 
    • Group by Scalar Functions 
    • Having Clause 
    • Order By 
    • Order By with NOT NULL 
    • LIMIT 
  • Complex SQL Queries
    • Inner Join 
    • CROSS Join
    • LEFT OUTER Join 
    • Subquery 
    • From Subquery 
  • Functions 
    • Mathematical Functions 
    • Trigonometric Functions 
    • Date & Time Functions 
    • String Functions 
    • Aggregate Functions
    • Some Advanced Functions 
  • Aggregation Functions 
© Copyright 2026 Bizdata Inc. | All Rights Reserved | Terms of Use | Privacy Policy